
Tutorial

How to use Project Analyzer

© Copyright 1999 Aivosto Oy
vbshop@aivosto.com

http://www.aivosto.com/project/project.html

This document is version 1.1 and was written for Project Analyzer 5.1

How to use Project Analyzer Document version 1.0

1Introduction
This tutorial tells you how to use Project Analyzer for optimizing and documenting your Visual

Basic programs.

1.1Executive summary. Why should we use Project Analyzer?
A tool for software engineers, Project Analyzer makes large software projects easier to

understand. It documents commented and even uncommented code. It also contains numerous
optimization and measurement features that help in fine-tuning and monitoring software
development.

Project Analyzer quickly pays itself back in easier maintenance, less errors, improved software
quality, and faster moving of projects from a programmer to another. It is most useful for analyzing
middle to large sized programming projects. A lot of large and small companies around the world
use Project Analyzer in some part of their software development cycle.

1.1.1What are the main features of Project Analyzer?

Project Analyzer is a tool that reads Visual Basic source code. The main features are related to
code optimization, producing professional documentation, and measuring programming efforts in
terms of output and quality.

Project Analyzer detects several types of programming problems related to optimization, style
and functionality, like unused variables, dead code, missing variable types, name conflicts, objects
with wrong scope, procedures missing code and buttons that do nothing. It also analyzes the design
quality with industry standard software engineering metrics like complexity, understandability and
reusability. In addition, Project Analyzer can document source code by creating source code
manuals and print-outs with cross-reference information.

1.1.2What are some special professional characteristics of the software?

Project Analyzer uses a powerful source code analysis engine that supports lots of the
professional features of VB code. Supported VB features include name shadowing, compiler
constants (#Const, #If..#End if), ActiveX projects, .dll files, and binary extension files (.frx).
Project Analyzer even supports a special syntax for fine-tuning the analysis called comment
directives.

Project Analyzer reports several levels of problems and optimization suggestions. For example, it
understands different levels of deadness definitions – including called-by-dead-only deadness for
procedures, and assigned-only deadness for variables. (If these words don't ring a bell yet, read on.)

1.2How do we get more help?
Because this is a tutorial, all features are not included. For a detailed help file, see project.hlp.

If you find something missing from this tutorial, please email to vbshop@aivosto.com with your
wish – it may be included in a later version. Your questions about the use of the program are
always welcome. We feel that providing good support is essential for this kind of software.

2

How to use Project Analyzer Document version 1.0

1.3Before we start: How to use the reports
Project Analyzer produces lots of different reports. All the reports work in the same way: first

you select the report type, then you make the report.
You select the report type using the menu command Options|Report to. Available types are:
1. Display – the default
2. Paper – to print your reports
3. File – available file types are:

· Plain text file
· Rich text format file (RTF)
· RTF for Help File, which you can use with Microsoft's Help Compiler to turn your reports

into normal Windows Help files.
· Hypertext file (HTML)

3

How to use Project Analyzer Document version 1.0

2How to optimize your code
When you make large programs, it often happens that extra code is left in the project. This extra

code can be unused subs and functions, old variables, unnecessary constants, even Types and
Enums. Extra code takes up disk space, slows down the program and it also makes it harder to read.

Because this code is not needed, it is also called dead code. The opposite of dead code is live
code. With Project Analyzer, you can find the dead code to remove.

Project Analyzer helps optimizing live code too. It reports questionable programming practices
and code that could be enhanced by adding an As Type or ByVal definition, for example.

2.1Problem view
The key to optimizing VB programs with Project Analyzer is its Problem view feature. The view

is visible at the bottom of the main window.

2.1.1Problem categories

Project Analyzer divides problems into 4 categories:
1. Optimization. These problems affect the speed and size of the resulting program negatively.
2. Style. These problems are related to the programming style. They don't necessarily lead to

problems in the short run, but they often lead to worse understandability and errors in the future.
3. Metrics is a sub-category of Style. You can set target values for different metrics and monitor

if some part of your program exceeds the limits. Read more about metrics in chapter 4.
4. Functionality. These problems affect the run-time functionality of the program. The reason is

often that somebody forgot to do something.

2.1.2Filter configuration
You may be interested in only 1 or 2 problem categories. Or you may think that the use of Goto

isn't that bad after all. That's why Project Analyzer lets you choose which problems to show and
which ones to hide. You can create quick check filters and strict filters for giving your code a final
polish. The predefined filters are:

Dead code Check deadness only
Disable checking Disable all problem checking
Functionality Report problems affecting functionality only
Optimizations Report problems related to optimization only
Strict Report all problems
Style Report problems related to style issues only

4

How to use Project Analyzer Document version 1.0

Press the button to configure filters.

2.1.3Removing dead code
Dead means unused. Unused files, procedures (i.e. subs, functions & properties), variables,

constants, user-defined types and Enums... Sometimes dead code is required for a later phase of
your development, but most of the time you can remove it without any problems.

Because there are different kinds of dead things, you are not supposed to remove all dead code
mechanically.

Note: When you have made changes to your source code, remember to check if the
modifications were OK. Don't save your modifications, but let VB first check if everything is
OK. Pressing Ctrl+F5 in Visual Basic makes VB to check everything and try to run the
program. If it works OK, you're safe to save your modifications.

Unused files. These are files that no other files refer to in the source code. Check if you really
need these files and remove them from your project.

Dead procedures. These things usually make up most of the extra code. Some people have
reported their project consisted of 30 – 40% of these things!

There are two kinds of dead procedures. The first ones are those that no other procedure calls.
Let's call this the primary case. You can safely remove any single dead procedure.

Then there is the secondary case: There may be a group of procedures that only call other
procedures in this group. However, no calls come from outside this group. So in effect, these
procedures are dead! This kind of deadness is marked with a C in the Problem report. You need to
remove all procedures in such a group at once, otherwise VB may complain about some missing
procedures.

Dead variables and constants are usually left behind because you alter some routines and don't
remember to remove the extra declarations. There are two types of dead variables: Those that are
not used at all, and those that are used only in assignment. This means that they are given a value,
but that value is not used anywhere in the program. Dead constants have only one type: those that
are not used at all.

To remove a variable or constant that is not used at all, just delete its declaration (the Dim
statement). To remove a variable that is used only in assignment, you need to find the statement
where it is used and determine what to do with the statement. Usually, it's a function call like this:

x = MyFunction(y, z)

If you don't need the return value x and you're using VB version 4.0 or later, you can modify this
statement to

MyFunction y, z

There is one thing you need to do to find dead variables. You need to use Option Explicit at the
start of each module. This makes Visual Basic require variable declaration. Using this option is
good programming practice and widely recommended by VB experts, because it forces you to
declare all your variables and makes your code more readable and require less RAM space.

Dead Types and Enums are there because of similar reasons as dead variables and constants.
You can remove a dead Type or Enum if you're sure you don't need it at a later time.

5

How to use Project Analyzer Document version 1.0

Procedures with no code. This is a special case of extra code. There may be a reason for an
empty procedure, but most of the time it's just taking up space. Check if you really need this kind
of a procedure and remove it if you don't.

2.1.4Further optimization with Problem report
Variables with no type. If you don't declare your variables as a specific type, VB uses the

default data type Variant. A Variant can contain any kind of data: numbers, text, object references,
tables, ... In some cases is great. But in most cases that's not required, and you know beforehand
what kind of data a variable contains.

Why is a Variant bad? The first reason is because it takes far more memory space than other data
types. You can save memory if you declare your variables as Integer, Single, String, etc. The
second reason is that using specific data types removes run-time errors. You never know what a
Variant contains, but an Integer always contains a number. This is especially important when
declaring procedure parameters.

Here is another reason why you should use Option Explicit. If you don't declare your variables,
they become Variants by default.

So to make your program require less memory and get rid of run-time errors, see the Problem
report for Variables with no type. Give a specific type to all Variants you can, like this:

Dim x
=> Dim x As Integer

In the following example, x is really a Variant. That's very difficult to notice without Project
Analyzer!

Dim x, y As Integer
=> Dim x As Integer, y As Integer

Functions with no type. Like variables, functions require a type definition too. If you don't
define the type, a function returns a Variant value. Example:

Function Calculate(ByVal Value As Single)
=> Function Calculate(ByVal Value As Single) As Single

There is nothing like Option Explicit to require a type definition for functions. So the only way to
check it is to use an analyzer.

2.1.5Style issues

You may feel that Project Analyzer often accuses you of using "wrong" programming style. Don't
let it make you feel bad! There are a number of ways to do certain things, and if done consistently,
no problems arise. However, you should pay attention to the style rules and make your decision of
what rules to obey.

Scope declaration missing. VB's default scope rules are somewhat complicated and may lead to
excess scope or a scope that is too limiting. Always give your procedures, variables etc. a scope.
Don't just write

Sub Calc()

It is not clear if Calc may be called from outside of its own module. Instead, write either

Private Sub Calc()

6

How to use Project Analyzer Document version 1.0

or
Public Sub Calc()

A Private thing cannot be called from outside of its own module. A Public thing is part of the
interface of the module and can be accessed from outside. In the case of Public classes and
UserControls, Public things may even be called from other projects.

Excess scope. A part of your program is accessible from other modules because it was
deliberately or accidentally made Public. However, other modules don't use it. Check if you should
declare the part as Private instead of Public. It is good programming practice to use as tight a scope
as possible to prevent other parts of the program calling and modifying parts that they shouldn't
have anything to do with.

Global found, use Public. Earlier versions of VB didn't have a Public keyword. Later, Public
and Private were introduced for defining the scope of things. Nowadays it is suggested that you use
Public instead of Global. They are synonymous words, so no harm is done.

ByRef/ByVal missing. VB's default for procedure parameters isn't that useful. If you haven't
declared a parameter either ByVal or ByRef, VB treats it as ByRef. Unfortunately, ByRef can lead
to unexpected results if it's not used correctly.

The cure is simple. Always use ByVal when possible! Like this:

Sub DoThings(Text)
=> Sub DoThings(ByVal Text As String)

What exactly are ByVal and ByRef? ByVal tells VB to pass a parameter by value. This means,
whatever changes you make to the value of that variable, the changes take effect only inside the
(sub-)procedure.

If you use ByRef, the parameter is passed by reference. This means that not only the value, but
the actual variable is passed to the procedure. When you change the value of the parameter, the
change is reflected in the calling procedure too! This may lead to errors that are very hard to notice.
Example:

Sub DoThings(Text As String) ' Text is ByRef by default
Text = "Hello, world!"

End Sub

Sub Main()
Dim Text As String
Text = "Hello, fellow!"
DoThings(Text)
MsgBox Text ' Shows Hello, world!

End Sub

If you used ByVal, the result would differ:

Sub DoThings(ByVal Text As String)
Text = "Hello, world!"

End Sub

Sub Main()
Dim Text As String

7

How to use Project Analyzer Document version 1.0
Text = "Hello, fellow!"
DoThings(Text)
MsgBox Text ' Shows Hello, fellow!

End Sub
2.1.6Other problems

The Problem view lists lots of other problems too. You can see descriptions of these problems in
project.hlp.

2.2Optimizing project groups with Super Project Analyzer
Super Project Analyzer is an add-in feature to Project Analyzer. It analyzes project groups that

share some files. These project groups are also called super projects. Super Project Analyzer
analyzes them. It reports which procedures, variables and constants, Types and Enums are shared
between projects, or dead. This is quite similar to what Problem report does for a single project.

Why do you need a separate analyzer then? A procedure that's not used in one project may be
used in another project. Super Project Analyzer takes the output of separate analyses and forms a
general picture of what can be removed and what can not.

To use Super Project Analyzer, first analyze all the projects in the super project separately and
save the results with the command Save data for Super Project Analyzer in the Add-Ins menu.
After that, start Super Project Analyzer and load this data to see the ultimate results.

Project Graph is an optional add-in for Project Analyzer. See the help file for more information.

2.3Comment directives: Bypassing certain optimizations
Sometimes a procedure (or variable etc.) is dead, but you know you'll need it later. Project

Analyzer has a special feature to ignore the deadness of given objects.
You do this by writing special comments in your code. These are called comment directives. They

don't affect Visual Basic in any way, but they tell Project Analyzer to behave in non-standard ways.
See topic Comment directives in project.hlp for the exact syntax.

8

How to use Project Analyzer Document version 1.0

3How to document your code
For many programmers, documentation is the last and the most boring job in a programming

project. It often gets forgotten because it doesn't seem to add any value. But what if someone else
has to continue with the undocumented code? Even the simplest documentation can save a lot of
money in such cases.

Project Analyzer includes a lot of features, mostly reports, for documentation purposes. Although
writing comments to code is essential for professional documentation, Project Analyzer can help
even in the case of uncommented code.

3.1Listing procedures with comments
A commented listing of procedures is the most basic form of code documentation. Project

Analyzer makes this listing by command Report|Procedure list. For each procedure, this command
can list comments and cross-reference information. Example:

Function CheckName(Byval Person As String) As Boolean
' Checks if Person exists in the database
' Returns True if successful

Called by: This section is optional
- AddEmployee
- UpdateEmployee
Calls: This is optional too
- CheckDatabaseField

To fully use this feature, you need to provide comments in your code. All comments immediately
before and after the procedure declaration line are included in the report. This means all comments
until an empty line or normal code is found. Example:

' This sub was created by N.N.
Sub MySub (Byval x As Integer)
' This sub does the following:
' It takes the parameter x and ...

' This line is not shown any more
Form1.Print x + 5

End Sub

The cross-reference information, calling and called procedures, is useful when you need to see
which procedures work together.

Comment manual is an enhanced version of listing procedures with comments. This is an option
in the Project Printer add-in. It is described later in this document.

3.2Listing variables and constants
Procedures are not everything a project contains. Global and module-level variables and constants

are equally important for documentation. To get a listing, open the Variables and constants window
in the View menu.

9

How to use Project Analyzer Document version 1.0

By pressing the Report button, you get a listing of all the variables and constants that are on the
screen. By checking the options, you can list global constants only, or all live variables and
constants, for example.

3.3Project Printer
The most thorough documentation of a project is its source code. Project Printer is an add-in tool

for Project Analyzer that makes documenting the whole source code easy. Project Printer is not just
an ordinary text file printer. Optionally, it formats code for easier reading, generates a table of
contents, and includes cross-reference information and various metrics too.

Besides reporting all source code, Project Printer can also create a comment manual, which means
formatted documentation with comments in the code.

Project Printer is an optional add-in for Project Analyzer. See the help file for more information.

3.3.1Documenting all source code with Project Printer
There are two ways to use Project Printer that can be recommended. You can either print all the

code on paper, or alternatively, put it all into an ordinary Windows Help file. The Help file option
is something that can be used to store code in a format that is easy to browse and to give colleagues
for learning.

Using Project Printer. What is special about Project Printer is that you first select the report type
before you actually select all the other options. This is because the report type has an effect on the
available options. For example, you cannot use syntax-enhanced reports with keyword bolding if
you're putting it all into a plain text file.

3.3.2Creating a comment manual with Project Printer

Comment manual is a feature of the Project Printer add-in. It creates a manual-like report based
on comments in your source code. It does not print all the code, just the contents of the comments.
This functions is an enhanced version of listing procedures with comments. What is different is that
you can use a special comment syntax to get a nice-looking, formatted manual.

Comment manual takes all comments immediately before and after your Sub/Function/Property
declaration line and makes a report out of them. All comments before the Sub/Function/Property
line are taken, as well as all comments after it up to an empty line or a normal code line. This latter
rule holds for comments at the start of the (declarations) section too.

For the exact syntax, please see topic Comment manual in project.hlp.

3.4Documenting cross-references with call trees
A program is not just a collection of procedures, it's very much calls from a procedure to another.

These calls are cross-references. Calls from a procedure to another, from there to the next one form
call trees.

There are two kinds of call trees: module call trees and procedure call trees. A module call tree
tells which other modules a module needs. A procedure call tree is more exact: it tells which
procedures are called by a given procedure.

3.4.1Ordinary call trees
Here is an example of a call tree for a function called RegExpr:

- RegExpr
 RaiseError
 RemoveMatches
 - ProcessParentheses
 GetParentheses
 + CreateMatch

10

How to use Project Analyzer Document version 1.0
 RaiseError

RegExpr calls RaiseError, RemoveMatches, and ProcessParentheses. ProcessParentheses calls
GetParentheses, CreateMatch, and RaiseError. CreateMatch calls other procedures, but they are not
shown now (+ denotes a branch that could be expanded).

You can get call trees like this by using the Call tree feature. You can find this in the View menu.
Use the Report button to get a report of what you see on the screen.

Call trees can get very large and practically useless. Therefore it is recommended that you
document only those call trees that are of special importance. You can always reconstruct call trees
by running Project Analyzer again.

3.4.2Need report (closure of a call tree)

When you take all the branches and leaves in a call tree, you get a need report, available in the
Report menu. Need report tells you all the parts in a program that procedure A requires to work. It
lists all required procedures, variables, constants, user-defined types and Enums.

You can take a need report for one procedure, or a group of procedures. If you take it for a group
of procedures, you simply get a list of everything that the group needs. This is useful if you want to
copy certain routines from a project to another.

3.4.3Graphical call trees (Project Graph)
The most intuitive call trees are graphical. Project Graph is an add-in feature of Project Analyzer

that can produce graphical call trees.

Project Graph generates both ordinary, or forward call trees, and backward call trees in the same
picture. Forward call trees tell what the computer must do to complete a procedure. Backward call
trees are the opposite: they tell which procedures need a given procedure.

Because graphical call trees easily get huge, the size of a graph is automatically limited to max 3
levels forwards and max 3 levels backwards. You can get more levels by right-clicking a node and
selecting Expand.

To print a graphical call tree, use the Printer button. This prints a page with the graph that is
currently shown on the screen.

Project Graph is an optional add-in for Project Analyzer. See the help file for more information.

11

How to use Project Analyzer Document version 1.0

4How to measure your code
To monitor their programming efforts, software engineers often use some simple metric, like

lines of code or EXE size. These are the most basic metrics, although they are not very
sophisticated. You use them just fine, but Project Analyzer knows more. It can tell you about the
understandability, complexity, and reusability of your code.

How to get metrics? You can see metrics in many different ways:
· The View|Metrics window is good to quickly point out complex procedures and modules.
· The Summary and Design quality reports are good to see the overall performance.
· VB Browser shows metrics for each module and procedure.

4.1The different groups of metrics

4.1.1Understandability
Bad understandability will most probably result in more errors and maintaining problems. You

can estimate the understandability of your program with the following metrics:

Lines of code / procedure (View|Metrics, Design quality report)
Procedures longer than 50 lines are often too long. An alarm limit could be 100 lines.

Comment to code ratio and whitespace to code ratio (Design quality report)
The more comments in your code, the easier it is to read - and understand. Whitespace is also

important for legibility.

Length of identifiers (Design quality report)
The longer your variable, procedure etc. names are, the more likely they are to be descriptive.

Cyclomatic complexity (View|Metrics, Design quality report)
Target for less than 10. See below.

Depth of conditional nesting (see View|Metrics)
Target for less than 5. See below.

4.1.2Complexity
There are many kinds of software complexity:

· Structural complexity relates comes from conditionals and loops, that is, the flowgraph of the
program.

· Psychological complexity means how difficult it is to understand a program. This is very much
related to structural complexity.

· Informational complexity is about how much data comes into a procedure and how much goes
out.

· Mathematical/computational complexity is about how much time and memory it takes to
execute an algorithm.

High complexity may result in bad understandability and more errors. Complex procedures also
need more time to develop and test.

12

How to use Project Analyzer Document version 1.0

The best measures for estimating the complexity of a procedure with Project Analyzer are:
- Lines of code
- Cyclomatic complexity
- Informational complexity
- Structural fan-out
These measures deal mostly with structural and informational complexity. See below for more

information.

4.1.3Reusability
Reusability is a magic word in programming. Measures for reusability are
- Reuse ratios reported by Super Project Analyzer (reuse in a group of projects)
- Structural fan-in. If it's high, the procedure/module is called (reused!) many times.
- Number of class modules

4.2What do the metrics actually mean?

4.2.1Lines of code
As simple as it may seem, lines of code is quite a good measure of how complex a program is.

Project Analyzer calculates lines of code as follows:

Lines of code = Total lines - Commented lines - Empty lines

Lines of code does not include control declarations in a .frm file.

4.2.2Cyclomatic complexity (McCabe)
Cyclomatic complexity is a measure of the structural complexity of a procedure. The higher the

number, the more complex the procedure, and the harder it is to maintain it. Cyclomatic complexity
for VB procedures is calculated as follows:

Cyclomatic complexity = Number of Branches + 1

Branches are caused by IF, SELECT CASE, DO...LOOP and WHILE...WEND statements.
"Normal" values for cyclomatic complexity range from 1 (very simple) to 9 (moderately

complex). If cyclomatic complexity is more than 10, you may want to split the procedure. If it's
over 20 you can consider it alarming.

Cyclomatic complexity is the minimum number of test cases you must have to execute every
statement in your procedure. This is important information for testing. Carefully test procedures
with the highest cyclomatic complexity values.

An average cyclomatic complexity, as well as the distribution of complexity, is reported on the
Design quality report.

Note: Cyclomatic complexity often gives quite high values for procedures with long SELECT
CASE statements.

4.2.3Nested conditionals
Nested conditionals metric is related to cyclomatic complexity. Whereas cyclomatic complexity

deals with the absolute number of branches, nested conditionals is only interested in how deeply
nested these branches are.

If you have a procedure with deeply nested conditionals, you should consider splitting it up.
Those procedures can be very hard to understand, and they are quite error-prone too.

13

How to use Project Analyzer Document version 1.0

4.2.4Nested loops

Nested loops is a very rough estimate of the mathematical complexity of a procedure. The more
nested loops there are in a procedure, the more likely it is that those loops take up a significant
amout of time to execute.

4.2.5Structural fan-in/fan-out (Constantine & Yourdon)

For procedures:
Structural fan-in = the number of procedures that use this procedure

Structural fan-out = the number of procedures this procedure calls

For modules:
Structural fan-in = the number of modules that use variables, constants, or

procedures in this module

Structural fan-out = the number of modules whose variables, constants, or
procedures this module needs

A high structural fan-in denotes reusable code.

The higher the structural fan-out, the more dependent that procedure is on other procedures, and
more complex too.

4.2.6Informational fan-in/fan-out and informational complexity (Henry & Kafura)

Lines of code, cyclomatic complexity, or structural fan-out are not perfect in predicting the "real"
complexity of a procedure. For example, a procedure may access a number of global variables and
be very complex without having to call many other procedures.

Informational fan-in = Procedures called + parameters referenced + global
variables referenced

Informational fan-in estimates the information a procedure reads

Informational fan-out = Procedures that call this procedure + [ByRef]
parameters assigned to + global variables assigned to

Informational fan-out estimates the information a procedure returns

Combined, these give a new metric: informational fan-in x fan-out. This is reportedly good in
predicting the effort needed for implementing a procedure, but not so good in predicting
complexity. To predict complexity, we need a new metric: informational complexity. It is
calculated as follows:

Informational complexity = lines of code x (informational fan-in x informational
fan-out)

14

How to use Project Analyzer Document version 1.0

4.3What are the target values?
There are no widely accepted target values for most of the metrics. You will have to make up

your own goals. Take the Design quality report for some of your projects and decide the good and
bad values yourself.

4.4Literature
See your library for software engineering related books. They usually have a chapter or two about

metrics too. Some books you could check:

Tom Manns and Michael Coleman: Software Quality Assurance.
Carlo Ghezzi, Mehdi Jaszayeri, Dino Mandrioli: Fundamentals of Software Engineering
Roger S. Pressman: Software Engineering

If you are really interested in structural complexity measures, there is a book that makes a
thorough mathematical examination of 98 proposed measures for structural intra-modular
complexity. This is for the advanced reader only.

Horst Zuse (1991) Software Complexity. Measures and Methods. Walter de Gruyter. Berlin - New
York.

4.5Systematic use of metrics
To follow how your projects develop, take a Summary report and a Design quality report often.

The Summary report tells how much has been done, and the Design quality report tells how well it
was done. If the comment to code ratio, for example, goes below a threshold level you've set, you
know your project isn't well documented and that more comments have to be written for the newly
created code.

When you have come up with some good target values for some metrics, you can set them as a
limit for the Problem view. Go to Options|Problem options and define a filter with your own set of
values. This way, you get notified when a procedure or module exceeds a target. You can also
check metrics values by taking reports from the View|Metrics window.

You should keep the number of overly complex procedures to a minimum. Otherwise these
procedures may get out of hand. It is easier to control these procedures when they are created. If
you try to control them afterwards, it gets harder and harder when you forget what they contained.

15

How to use Project Analyzer Document version 1.0

5Other features
The basic features of Project Analyzer are related to analysis, optimization, and documentation as

described in the preceding chapters. This chapter describes other features shortly. You are asked to
see project.hlp for more information on these features.

VB Browser is in the main window of Project Analyzer. You can browse your code and jump
from procedure to procedure using hyperlinks.

Archive project files command, in the File menu, can be used to put all files contained in a
project to an archive file. It is designed to work with pkzip or arj. You can also get a text file listing
all files in a project using this feature.

File and procedure details reports are similar to the File list and Procedure list reports, but only
contain one file or procedure.

Call tree reports in the Report menu are a substitution to using the Call tree window in the View
menu. Use of the Call tree window is recommended instead of the reports, because the reports can
get unexpectly large – especially the All procedures call tree report.

Cross-reference report lists all calls to and from procedures, references and assignments to
variables, constant references, and Type and Enum references.

Call depth report reports number of nested procedure calls. In other words, this is the same as
the depth of a forward call tree, procedure by procedure. It also reports dead code.

Name shadowing report finds objects that have exactly the same name and a name clash thus
occurs. This happens when the same name exists in both two scopes – for example, when AskName
is both a form name and a procedure-level variable. Name shadowing may lead to programming
errors that are hard to detect, but is not dangerous otherwise.

Library report lists all DLLs, OCXs and other libraries referenced by your project. This list does
not include all files required by your program (when distributed), but only those that are referenced
in the code and in the .vbp file.

Save analysis is a feature that saves the analysis results in a file that you can load the next time
you use Project Analyzer. Loading from a saved analysis is faster than re-analyzing the whole
project again.

16

How to use Project Analyzer Document version 1.0

Table of contents

1. Introduction
1.1 Executive summary. Why should we use Project Analyzer?..

1.1.1 What are the main features of Project Analyzer?...
1.1.2 What are some special professional characteristics of the software?.................................

1.2 How do we get more help?..
1.3 Before we start: How to use the reports..

2. How to optimize your code
2.1 Problem view...

2.1.1 Problem categories...
2.1.2 Filter configuration...
2.1.3 Removing dead code..
2.1.4 Further optimization with Problem report..
2.1.5 Style issues...
2.1.6 Other problems...

2.2 Optimizing project groups with Super Project Analyzer..
2.3 Comment directives: Bypassing certain optimizations...

3. How to document your code
3.1 Listing procedures with comments..
3.2 Listing variables and constants..
3.3 Project Printer..

3.3.1 Documenting all source code with Project Printer...
3.3.2 Creating a comment manual with Project Printer..

3.4 Documenting cross-references with call trees...
3.4.1 Ordinary call trees..
3.4.2 Need report (closure of a call tree)...
3.4.3 Graphical call trees (Project Graph)...

4. How to measure your code
4.1 The different groups of metrics...

4.1.1 Understandability..
4.1.2 Complexity...
4.1.3 Reusability..

4.2 What do the metrics actually mean?..
4.2.1 Lines of code..
4.2.2 Cyclomatic complexity (McCabe)..
4.2.3 Nested conditionals...
4.2.4 Nested loops...
4.2.5 Structural fan-in/fan-out (Constantine & Yourdon)...
4.2.6 Informational fan-in/fan-out and informational complexity (Henry & Kafura)................

4.3 What are the target values?..
4.4 Literature...
4.5 Systematic use of metrics..

5. Other features

17

	1 Introduction
	1.1 Executive summary. Why should we use Project Analyzer?
	1.1.1 What are the main features of Project Analyzer?
	1.1.2 What are some special professional characteristics of the software?

	1.2 How do we get more help?
	1.3 Before we start: How to use the reports

	2 How to optimize your code
	2.1 Problem view
	2.1.1 Problem categories
	2.1.2 Filter configuration
	2.1.3 Removing dead code
	2.1.4 Further optimization with Problem report
	2.1.5 Style issues
	2.1.6 Other problems

	2.2 Optimizing project groups with Super Project Analyzer
	2.3 Comment directives: Bypassing certain optimizations

	3 How to document your code
	3.1 Listing procedures with comments
	3.2 Listing variables and constants
	3.3 Project Printer
	3.3.1 Documenting all source code with Project Printer
	3.3.2 Creating a comment manual with Project Printer

	3.4 Documenting cross-references with call trees
	3.4.1 Ordinary call trees
	3.4.2 Need report (closure of a call tree)
	3.4.3 Graphical call trees (Project Graph)

	4 How to measure your code
	4.1 The different groups of metrics
	4.1.1 Understandability
	4.1.2 Complexity
	4.1.3 Reusability

	4.2 What do the metrics actually mean?
	4.2.1 Lines of code
	4.2.2 Cyclomatic complexity (McCabe)
	4.2.3 Nested conditionals
	4.2.4 Nested loops
	4.2.5 Structural fan-in/fan-out (Constantine & Yourdon)
	4.2.6 Informational fan-in/fan-out and informational complexity (Henry & Kafura)

	4.3 What are the target values?
	4.4 Literature
	4.5 Systematic use of metrics

	5 Other features

